Python Programming with Machine Learning

  • Python syntax & keywords
  • Variables & data types
  • Control flow (if, loops)
  • Functions & debugging
  • Data structures (list, tuple, dict, set)
  • OOP concepts
  • File handling

  • Arrays & linked lists
  • Stacks & queues
  • Trees & graphs
  • Searching algorithms
  • Sorting algorithms
  • Recursion
  • Time & space complexity (Big O)

  • NumPy arrays & operations
  • Indexing, slicing & reshaping
  • Statistical & linear algebra functions
  • Pandas Series & DataFrames
  • Data cleaning & transformation
  • Grouping & aggregation
  • Merging & joining data

  • Matplotlib basics
  • Line, bar & scatter plots
  • Histograms & pie charts
  • Customizing graphs
  • Seaborn visualizations
  • Statistical plotting

  • Data preprocessing
  • Feature scaling & encoding
  • Statistics & probability
  • Supervised learning algorithms
  • Unsupervised learning
  • Model evaluation metrics
  • scikit-learn workflows

  • KNN, SVM, Decision Trees
  • Random Forest & PCA
  • Regression & classification
  • Introduction to Deep Learning
  • CNN & RNN basics
  • Real-time ML projects
  • End-to-end ML pipeline